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Exercise: Calibration of a Sick-Sicker Model

In this exercise, we will calibrate a model of a hypothetical Sick-Sicker disease. A Markov model of the
Sick-Sicker disease has been implemented using four health states: Healthy (H); two disease states, Sick
(S1) and Sicker (S2); and Dead (D). A state transition diagram is shown in Figure 1. All individuals start
in the Healthy state (H). Over time, healthy individuals may develop the disease and can progress to S1.
Individuals in S1 can recover (return to state H), progress further to S2 or die. Once in S2, individuals
cannot recover (i.e. cannot transition back to either S1 or H). Individuals in H have a baseline probability
of death, while individuals in S1 and S2 have an increased mortality rate compared to healthy individuals,
modeled as a hazard ratio applied to the baseline mortality rate.

Unfortunately, while we can identify those who are afflicted with the illness through obvious symptoms, we
can’t easily distinguish those in the S1 state from the those in the S2 state. Thus, we can’t directly estimate
state-specific mortality hazard ratios, nor do we know the transition probability of progressing from S1 to
S2. We do have some idea of the plausible ranges for these unknown parameters; these ranges are listed in
Table 1. All other model parameters are known and are also listed in Table 1.

There are three calibration targets to be used in this example: (1) observed survival of a cohort over time;
(2) disease prevalence in a cohort over time; and (3) among sick patients (S1+S2), the proportion who are
in the S1 state at three points in time. The first two targets came from an observational study of a typical
cohort of individuals. The third target was obtained by subjecting ill patients to an invasive procedure which
can determine disease stage but can’t be used routinely due to its invasiveness. The calibration target values
are provided in the data file “SickSicker_CalibTargets.RData”, which contains a list with three data frames:
Surv, Prev, and PropSick.

Tasks

1. Use the R script SickSicker_CalibTemplate.R as a starting point to code the calibration of the
Sick-Sicker.

• Load and plot the calibration target data stored in SickSicker_CalibTargets.RData.

• Source the file, SickSicker_MarkovModel_Function.R, which contains the Sick-Sicker model function,
run_sick_sicker_markov(). This function takes in a vector of three parameters, c(p_S1S2, hr_S1,
hr_S2), and returns model outputs corresponding to the calibration targets. Try using the model
function and look at the output.

2. Implement the calibration of the Sick-Sicker model using random search with 1000 random samples.
Copy code from the calibration of the 3-state model, modifying where necessary. Remember that the
Sick-Sicker model needs to be calibrated to three different targets (instead of one) by varying three
different inputs (instead of two).

• Explore the top-fitting input sets (e.g. top 10, top 100). To visualize the best-fitting sets, use
pairs.panels() and scatterplot3d() functions. Type “?scatterplot3d” for function documentation.

• Plot the model-predicted output at the best-fitting parameter set overlaid over each of the three types
of calibration targets (extend the plotting code in the 3-state model calibration script).

3. Save a new copy of your Sick-Sicker model calibration code. Change the implementation from random
search to Nelder-Mead, using 100 random starting points. Where do you need to make changes? Use
the Nelder-Mead calibration of the 3-state model as a guide.

• Explore the top-fitting input sets (e.g. top 10) using pairs.panels() and scatterplot3d(). How
does it compare to the best-fitting sets from random search?
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• Plot the model-predicted output at the best-fitting parameter set overlaid over each of the three types
of calibration targets.

4. Save a new copy of your Sick-Sicker model calibration code. Use the Bayesian calibration of the 3-
state model as a guide and modify your Sick-Sicker calibration code to implement the IMIS calibration
method.

• Sample 1,000 parameter sets from the calibrated posterior distribution. Visualize these parameter sets
using scatterplot3d() and pairs.panels().

• Plot the model-predicted output at the maximum aposteriori parameter set overlaid over each of the
three types of calibration targets.

Table 1: Input parameters for the time dependent Sick-Sicker Microsimulation

Parameter R name Value
Time horizon n_t 30 years
Cycle length 1 year
Names of simulated individuals n_i 1000
Names of health states v_n H, S1, S2, D
Annual discount rate (costs/QALYs) d_r 3%
Annual transition probabilities
- Disease onset (H to S1) p_HS1 0.15
- Recovery (S1 to H) p_S1H 0.5
- Disease progression (S1 to S2) p_S1S2 To be calibrated;

range: 0.01 - 0.50
Annual mortality
- All-cause mortality (H to D) p_HD 0.005
- Hazard ratio of death in S1 vs H hr_S1 To be calibrated;

range: 1.0 - 4.5
- Hazard ratio of death in S2 vs H hr_S2 To be calibrated;

range: 5 - 15
Annual costs
- Healthy individuals c_H $2,000
- Sick individuals in S1 c_S1 $4,000
- Sick individuals in S2 c_S2 $15,000
- Dead individuals c_D $0
- Additional costs of sick individuals treated in S1 or
S2

c_trt $12,000

Utility weights
- Healthy individuals u_H 1.00
- Sick individuals in S1 u_S1 0.75
- Sick individuals in S2 u_S2 0.50
- Dead individuals u_D 0.00
Intervention effect
- Utility for treated individuals in S1 u_trt 0.95
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Figure 1: Schematic representation of the Sick-Sicker model
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