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The data for medical decision analyses are often unreliable. Traditional sensitivity
analysis - varying one or more probability or utility estimates from baseline values
to see if the optimal strategy changes - is cumbersome if more than two values are
allowed to vary concurrently. This paper describes a practical method for probabilis-
tic sensitivity analysis, in which uncertainties in all values are considered simultane-
ously. The uncertainty in each probability and utility is assumed to possess a proba-
bility distribution. For ease of application we have used a parametric model that per-
mits each distribution to be specified by two values: the baseline estimate and a
bound (upper or lower) of the 95 percent confidence interval. Following multiple
simulations of the decision tree in which each probability and utility is randomly as-
signed a value within its distribution, the following results are recorded: (a) the mean
and standard deviation of the expected utility of each strategy; (b) the frequency with
which each strategy is optimal; (c) the frequency with which each strategy &dquo;buys&dquo; or
&dquo;costs&dquo; a specified amount of utility relative to the remaining strategies. As illustrat-
ed by an application to a previously published decision analysis, this technique is
easy to use and can be a valuable addition to the armamentarium of the decision
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The data for medical decision analyses are often uncertain or unreliable.
Two of the main routes to obtaining such information - studies reported in
the medical literature and experts’ subjective estimates - are frequently im-
precise. Medical studies may be poorly designed and are often based on
small numbers of patients. Furthermore, the patients in the study may
differ from the individual or group to whom the decision analysis is being
applied. Subjective estimates may be afflicted by a variety of biases [1].

Figure 1. Decision tree for suspected herpes simplex encephalitis (HSE). The deci-
sion options are: Do a brain biopsy, followed by therapy with vidarabine only if the
biopsy is positive for HSE (brain biopsy); Treat with vidarabine without biopsying
(no biopsy; treat with vidarabine); Do not biopsy and do not treat with vidarabine
(no biopsy; do not treat). Possible sequelae of brain biopsy and of disease (treated or
untreated) are considered separately in the brain biopsy subtree. (Adapted from [2])
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Consider, for example, the decision tree in Figure 1 (modified from [2]),
which examines the decision to biopsy, treat, or not treat a patient with sus-
pected herpes simplex encephalitis (HSE). Sequelae of both brain biopsy
and of the disease (treated or untreated) are considered, and several out-
comes ranging from death to minimal-to-no sequelae are included. There
are few reported studies on which to base estimates of the needed probabili-
ties, and those that are available involve small numbers of patients [3,4].
When experts were polled for subjective probability estimates there was
wide variation in the values provided; an extreme example was the range of
0.1 to 0.5 for the probability of death in untreated non-HSE patients [2].

The uncertainties of the probability estimates in this case are further
highlighted by the marked discrepancies between a number of the values
used by Braun [2] and those used in another analysis [5] of the same clinical
problem. Assignment of utility values to outcomes is at least as difficult as
probability estimation. There are no objective guidelines for evaluating
moderate or severe sequelae relative to death and minimal-to-no sequelae,
and subjective estimators might not even agree on the rank order of death
and severe sequelae.

There are at least two reasons why the decision analyst must deal with
uncertainty in available data. First, physicians are unlikely to be influenced
by a decision analysis whose result is contrary to their clinical judgment
unless the analyst provides an argument that addresses the uncertainty in
the probability and utility estimates in the tree. Second, unless the effect of
uncertainty is examined there is no guide as to whether it would be worth-
while to seek better data (e.g., by carrying out clinical trials) for future
decisions in similar patients.

The usual tactic for dealing with uncertain data is to carry out a sensitiv-
ity analysis by varying one or more of the probability or utility estimates
from baseline values and observing the effect on the choice of strategy [6].
If a single strategy has the highest expected utility when estimates are varied
within a reasonable range, then that strategy can be recommended with con-
fidence (provided that the decision tree itself is an adequate model of the
clinical problem). On the other hand, if the optimal strategy is sensitive to
variation of baseline estimates, then it is appopriate to treat the results skep-
tically and to consider areas in which further data collection may be
valuable.

Conventional sensitivity analysis, however, has a number of limitations.
It is cumbersome when more than two or three quantities are allowed to
vary simultaneously, and the results of a multiple-way analysis cannot read-
ily be presented. Even a three-way sensitivity analysis using families of
curves on a graph [7] may be difficult for a mathematically unsophisticated
reader to follow. This restriction to no more than three-way analysis is a
major drawback for trees with many uncertain estimates. If the tree has, for
example, 50 probabilities and utilities, then the results of a three-way analy-
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sis are conditional upon the validity of the estimates selected for the remain-
ing 47 quantities. A further limitation of conventional sensitivity analysis is
that it does not permit the decision analyst to make a summary statement,
often requested by the physician, about the certainty that the strategy select-
ed by the analysis is in fact optimal.

Figure 2. Basis for probabilistic sensitivity analysis. All probabilities and utilities are
variable quantities and have associated distribution functions (the density function is
illustrated here). The range of possible values is shown as 0-1, but may differ in
other examples.
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An alternative, probabilistic approach to sensitivity analysis, without
these limitations, has been described by Pass and Goldstein [8]. We will
summarize their technique, which is based on Monte Carlo simulation, and
then present a method by which probabilistic sensitivity analysis can be a
practical, easily applied tool for the decision analyst.

Methods

PROBABILISTIC SENSITIVITY ANALYSIS

This section summarizes the approach of Pass and Goldstein. Each prob-
ability and utility in the decision tree, instead of taking on a single value, is
assumed to be a variable quantity with a range of possible values and to
have an associated distribution function (Figure 2). The expected utility of
each decision option, computed by &dquo;folding back&dquo; the decision tree, is a sum
of products of these probabilities and utilities, and hence is itself a variable
quantity whose distribution function depends on those of the individual
probabilities and utilities.

Precise calculation of the distributions of expected utilities, and of the
confidence with which an optimal strategy can be selected, is impossible
unless- the decision tree is very simple (and usually unrealistic). Instead, a
Monte Carlo approach can be used. Each probability and utility is random-
ly assigned a value from its distribution, and the expected utility of each
option is computed. This process is repeated a large number of times, and
the following results are recorded:

(a) The mean and standard deviation, over all runs, of the expected utility
values for each strategy.

(b)The frequency with which each strategy is optimal. This provides a
measure of the confidence with which an optimal strategy can be se-
lected on the basis of the decision tree and data at hand. If no single
strategy is optimal in a large fraction of the runs, this indicates that
too much uncertainty exists to rely confidently on the results of the
analysis. Conversely, if one strategy has the highest expected utility in
a large majority (e.g., 95%) of the runs, then - barring systematic
errors in the model or the data - that strategy can confidently be
selected as the optimal one.

(c) The frequency with which each strategy &dquo;buys&dquo; or &dquo;costs&dquo; a specified
amount of utility. A strategy &dquo;buys&dquo; a given amount of utility if its ex-
pected utility is at least this amount greater than that of all other strat-
egies. It &dquo;costs&dquo; a given amount of utility if its expected utility is at
least this amount less than that of any other strategy. These frequen-
cies can be of value when the magnitude of the difference in expected
utility is important (e.g., if there is an amount below which differ-
ences are felt to be clinically unimportant).
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A PRACTICAL APPROACH TO PROBABILISTIC SENSITIVITY ANALYSIS

Specifying Distribution Functions. Specifying distribution functions
about all probabilities and utilities can be a time-consuming task. We there-
fore sought to make probabilistic sensitivity analysis a practical tool by de-
vising a method to specify distributions easily and quickly. In addition to
ease of application, our method had to satisfy a second condition: If the
user has already carried out a decision analysis with a set of initial, or base-
line, values for each probability and utility, and then wants to perform a
sensitivity analysis centered on these values, the mean of each distribution
function must equal the baseline value. This condition assures that the mean
value of the expected utility of each strategy, over all runs of a Monte Carlo
simulation, will converge to the baseline expected utility [9].
We achieved these goals - simplicity and internal consistency - by as-

suming that each distribution can be approximated by a parametric distri-
bution. While there is no type of distribution that can be considered correct
a priori, we have found the logistic-normal distribution (Figure 3) to be a
convenient and mathematically tractable model for this purpose. That is,
we assume that the logit transform - log(X/ 1- X) - of each probability
and utility is normally distributed. This transformation has been suggested
before for modeling probabilities [10], and its statistical properties have
been studied [11]. (If the range of possible values is other than 0-1, say
A-B, then log(X/ 1-X) is replaced by log «X -A)/(B-X). Unless other-
wise stated, we assume a range of 0-1; all equations, including those in Ap-
pendix A, can easily be modified to apply to the A-B range.)

The benefits of assuming that each quantity X (probability or utility) has
a logistic-normal distribution are twofold. First, the normal distribution as-
sociated with logit(X) is fully determined by two values: its mean > and
standard deviation s. Second, random selection of a value r (between 0 and
1) from the distribution of X is easily accomplished by first randomly
choosing a value z (between - oo and + oo) from the associated normal dis-
tribution [12] and then taking r to be the value whose logit is z. That is,

This would complete the description of our method if the mean > and
standard deviation s of the logit transform of a probability or utility were
directly obtainable. In fact, they are not. We show instead how it and s can
be derived from two values of the probability or utility X: its mean, or base-
line value, and the upper or lower bound of its 95 percent confidence
range. Estimates of the mean and bound can be based on subjective esti-
mates or on objective data. In the former case, an expert source specifies the
two values instead of a baseline value alone, as in a conventional decision
analysis. As an example of the latter, suppose a probability of 0.8 is esti-
mated on the basis of an event occurring in 80 out of 100 experimental
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subjects. Using standard statistical techniques for a normal approximation
to the binomial distribution [13], the 95 percent confidence range is

approximately

Therefore, our baseline value is 0.80, with a lower bound of 0.72 and an
upper bound of 0.88.

The derivation of the mean it and standard deviation s of logit(X) from
the mean m and a bound b of X would appear, at first sight, to be a straight-
forward undertaking. In particular, one might assume that 1A is equal to

Figure 3. A logistic-normal random variable and its associated normal distribution.
A random variable X, whose density function is shown in the upper half of the fig-
ure, is logistic-normal if there is a normal distribution (bottom half of the figure)
such that, for any value v between 0 and 1, the areas under the curves below v and
logit(v) (shaded regions) are equal. m is the mean value of X, IA of the normal distri-
bution representing logit(X). Because X has a skewed distribution, it is not equal to
logit(m).
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logit(m). Unfortunately, this is not the case, because of skewness in the dis-
tribution in the logit scale (Figure 3). Instead, it and s are computed from m
and b using the following formulas (derived in Appendix A):

1. If m ~ 0.5, 0.025, and 0.975, then

where M = logit(m), B = logit(b), E = 1.96/~ ’ (m) (4)-l represents the
inverse2 of the normal distribution function <1»).

2. If m = 0.5, then /~ = 0.
3. If m = 0.025 or 0.975, then w = (M2 + B2) / 2B.

Once > has been calculated from these formulas, s is computed by

(Note that if the quantity inside the radical in the initial formula for m is
negative, then m and b cannot be the mean and bound of a logistic-normal
distribution. This can occur only if m > 0.975 and b is substantially less
than 1 (e.g., m = 0.98, b = 0.70), or if m < 0.025 and b is well above 0.

Furthermore, as shown in Appendix A, the formulas do not apply [and
hence m and b cannot be fitted to a logistic-normal distribution] whenever
m a 0.975 and b < 0.5, or m :5 0.025 and b > 0.5. When m is greater
than 0.025 and less than 0.975, there is always an appropriate logistic-
normal distribution.)

If b was specified to be the 95 percent lower bound, then these formulas
assure that 2.5 percent of the logistic-normal distribution falls below b. The
value above which 2.5 percent of the distribution lies was not explicitly
chosen, and so is referred to as the implicit upper bound. As shown in
Appendix A,

If b had been chosen to be the 95 percent upper bound, then the implicit
lower bound would be given by an equation similar to this, but with
p. + 1.96s replaced by p. -1.965. The term implicit other bound will be used
to refer to the implicit upper or lower bound.
We illustrate these formulas using the earlier example of a probability

estimated to be 0.80 ± 0.08. Using the mean value m = 0.80 and the lower
bound b = 0.72 in the above formulas, we obtainu = 1.40 and s = 0.23.
That is, the uncertainty in this probability is represented by a logistic-
normal distribution whose associated normal distribution has mean 1.40
and standard deviation 0.23. The implicit upper bound is 0.86. (If we had
chosen to use the upper bound of 0.88, we would have obtained the slightly
different parameters it = 1.41 and s = 0.30. The implicit lower bound
would have been 0.69.)
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Chance Nodes with More than Two Branches. The foregoing discussion
of distributions about probabilities applies to two-way chance nodes. The
distribution about either of the two probabilities at such a node is derived as
described above; the second probability, being one minus the first, is fully
determined by the first. It is immaterial which probability is considered
first, because if X is a logistic-normal random variable with values between
0 and 1, then 1- X is also logistic-normal (since 10git(1- X) = - logit(X)).

For a decision tree that contains multiple-way chance nodes, one of two
approaches can be taken. The tree can be replaced by an equivalent one that
has only two-way nodes. A three-way node can be replaced by a pair of two-
way nodes using the method illustrated in Figure 4; this can be extended to
nodes with more than three branches. In some cases, however, this process
yields a tree that is unwieldy, or one for which it is difficult to estimate
mean and boundary values for the resulting chance nodes. If so, a modifica-
tion of the technique described for two-way nodes can be used. This modifi-
cation is presented in Appendix B.

Derived Probabilities and Utilities. Some of the probabilities or utilities
in a decision tree may be derived from, or best viewed as arising from, a set
of more fundamental values. For example, since death in a patient with
nonherpes encephalitis treated (unnecessarily) with vidarabine (see Figure 1)
can occur as a consequence either of the disease or of drug toxicity, the
probability of death in such a patient can be viewed as a derived value that

Figure 4. Three-branch chance node (a) and an equivalent sequence of two-branch
nodes (b). q, the probability of B occurring given that A does not occur, is equal to
P2/(I-p¡).
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depends on two more basic ones. In particular, if p is the probability of
death fron non-HSE and P2 that of death from vidarabine, and if interac-
tions between the two are insignificant, then the probability of death in such
a patient is

Another example (not in this decision tree) of a derived probability is one
computed from prior and conditional probabilities using Bayes’ theorem
[6].

In such cases, since the distributions of two or more derived probabilities
or utilities that depend upon a common set of fundamental values are likely
to be highly correlated, it is preferable to base the Monte Carlo simulation
on the fundamental values. That is, one should specify the distributions
about the fundamental values, and carry out the Monte Carlo simulation by
random selection from these distributions. In the HSE tree, in each run of
the simulation p, and p2 are assigned values randomly from their distribu-
tions, and the probability of death in non-HSE patients receiving vidarabine
is computed from these by means of the above formula.

Application of the Technique: An Example
As noted earlier, the decision tree in Figure 1 is designed to examine the
choice among three management options for a patient suspected of having
Herpes simplex encephalitis (HSE). In this section, we demonstrate the
application of our technique to this tree. It should be noted that this is

meant as an illustrative example only, for two reasons. First, the example is
modified from an analysis in which experts were polled for their best esti-
mates of probabilities, but were not asked to provide upper or lower
bounds. Second, the tree structure omits one potentially important reason
for doing a brain biopsy - to find another treatable cause for the patient’s
symptoms, such as an occult abscess not identified by the patient’s prior
workup.

Table 1 provides mean (baseline) and boundary values of the needed
probabilities and utilities, based in part on the experts’ estimates in the orig-
inal analysis [2]. Note that one bound is selected for each parameter, and
that it need not be of the same type (upper or lower) for all.

The baseline expected utilities of the three options, computed from the
baseline values of probabilities and utilities, are listed in the top row of
Table 2. The no biopsy; treat strategy has the highest expected utility, by a
small margin over brain biopsy. That is, using our best set of estimates of
probabilities and utilities, the optimal strategy is to treat the patient with
vidarabine empirically, without prior biopsy.
An Apple II Plus computer was programmed to carry out the probabilis-

tic sensitivity analysis. The program derives the normal distribution associ-
ated with each probability and utility (as per Appendix A), and carries out



Table 1. Data Used for HSE Probabilistic Sensitivity Analysis

aProbabilities of severe or moderate sequelae, given that no worse outcome has occurred.
bProbability of death with treated HSE (baseline value) = 0.7 - 0.37 x 0.7 = 0.44. Similar com-
putations apply for probabilities of severe and moderate sequelae of treated HSE.
cprobability of death with treated non-HSE (baseline value) = 0.18 +.004 - 0.18 x .004 = 0.183.
Similar computations apply for probabilities of severe and moderate sequelae of treated non-
HSE.

d’The utility assigned to a patient who has sequelae of both brain biopsy and disease (treated or
untreated) is the product of the two individual utilities.
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Table 2. HSE Decision Analysis and Probabilistic Sensitivity Analysis

the Monte Carlo simulation by repetitively sampling from each distribution
and computing the expected utility of each of the three decision options.
The running time of the program is 2.5 minutes per 100 simulations.

The results of a probabilistic sensitivity analysis involving 1000 simula-
tions of the decision tree are presented in the lower portion of Table 2. The
mean values of the three expected utilities over all runs are almost exactly
equal to the baseline expected utilities. (This, as noted earlier, is because the
mean value of the distribution about each probability and utility equals the
baseline value.) The no biopsy; treat strategy had the greatest expected util-
ity in 795 of the 1000 runs, suggesting that we can be 79.5 percent confident
that this is the best strategy. However, we can be only 58.3 percent con-
fident that it is best by a margin of at least 0.004 utility units. This figure
would be of interest if a difference of four deaths (or their equivalent in
severe or moderate sequelae) per 1000 patients were felt to be the smallest
clinically important difference. The no biopsy; do not treat strategy, on the
other hand, is worst by at least this margin in 89.5 percent of runs.

It is notable that the no biopsy; treat strategy is optimal in as many as 795
or the 1000 runs, despite the fact that the standard deviations of the expect-
ed utilities of the strategies are approximately 0.1, tenfold greater than the
difference in mean values of the two best strategies. If the expected utilities
of the strategies had been independent of each other, then no biopsy; treat
would have been superior to brain biopsy in considerably fewer of the runs.
The observed value of 79.5 percent occurs because the distributions of ex-

pected utilities of the three strategies are highly interdependent, since they
all depend on a common set of probability and utility estimates. As an
example of such interdependence, as the probability of HSE increases or the
utility value assigned to moderate sequelae decreases, the expected utilities
of all three strategies decrease.

The numbers in Table 2 would vary somewhat from analysis to analysis.
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Using binomial sampling we can predict that, in 95 of 100 Monte Carlo
analyses (each involving 1000 runs , the ~o ~o/~/ treat strategy would be
optimal in 0.795 ± 1.96 x 795 x 205 / 1 0~~, or 77%-82% of the runs. A
similar procedure can be used to estimate the ranges about the other values
in Table 2.

If subsets of patients at low and high risk for HSE can be defined, then a
single strategy might be selected with greater confidence than in the overall
group. To examine this, we reran the entire analysis twice, the first assum-
ing a subset at high risk (mean prevalance 0.6, bound 0.85) and the second
at low risk (mean 0.1, bound 0.25). The no biopsy; treat strategy had the
highest baseline expected utility in both of these groups, but the confidence
in its optimality (as reflected by the frequency with which its expected utility
is greatest) differed considerably in the two. In the high-risk group it was
optimal 92.3 percent of the time, but in the low-risk group in only 51.1 per-
cent of runs. This would suggest that in the latter group there is too much

uncertainty in the data to rely confidently on the results of the analysis.

Discussion

We have developed a practical method for probabilistic sensitivity analysis
in which uncertainties in all probabilities and utilities are considered simul-
taneously. This method distinguishes between uncertainties inherent to a
decision problem, which are represented by chance nodes in the decision
tree, and uncertainties surrounding the estimation of the probabilities and
utilities. The latter set of uncertainties is usually ignored, or incompletely
examined, in conventional decision analysis. Probabilistic sensitivity analy-
sis accomodates them by calculating the probability distributions of the ex-
pected utilities, via Monte Carlo simulation. Probability statements about
the reliability of the conclusions of the decision analysis can thereby be
made.

The method we have presented builds upon the general approach to
probabilistic sensitivity analysis described earlier by Pass and Goldstein [8].
By assuming that all distribution functions have parametric form probabil-
istic sensitivity analysis becomes a practical tool, in that distributions can be
fully determined by specifying two values. The choice of the logistic-normal
distribution enables us to approximate the full distribution in closed form
(Appendix A) from the specified mean and either an upper or lower bound.
We must emphasize that the logistic-normal distribution is an option we

have chosen for modeling probabilities and utilities. Others, such as the
binomial, triangular, or beta distributions, might be considered, but each of
these has important limitations with respect to use in probabilitistic sensitiv-
ity anlysis. Direct simulation from a binomial distribution is time-consum-
ing (even using a microcomputer), and simulation from the normal approxi-
mation to the binomial distribution will occasionally yield values of proba-
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bilities or utilities outside the permissible range (0-1). Triangular distribu-
tions (i.e., ones whose density functions are inverted Vs) are simple bound-
ed distributions. However, they present difficulties when the mean value is
very close to 0 or 1, in that the distribution must be very narrow to have an
extreme mean value. For example, with a mean value of 0.004 (the value
selected for the mortality rate of brain biopsy), a triangular distribution can
have a maximum value of at most 0.012, and a 95 percent upper bound of at
most 0.01 (the verification of this statement is straightforward, and is not
presented). Thus the chosen values of m = 0.004 and b = 0.02 would not
be compatible with a triangular distribution. The beta distribution has a
bounded range (0-1) and is often used to model distributions about proba-
bilities, but we know of no simple way to compute the two parameters of a
beta distribution from its mean and 95 percent bound (or from any other
pair of values that can be estimated subjectively).

There is, of course, a loss of generality in using the logistic-normal model
to approximate all distribution functions. The possible values that a given
probability or utility can assume may not conform to such a distribution.
However, we believe that our model’s ease of application outweighs its loss
of generality. Furthermore, there is rarely sufficient information concern-
ing the actual distribution of a probability or utility to indicate that it fits
poorly to a logistic-normal pattern, or that it fits more closely to another
distribution type such as the beta distribution.
Our technique is well suited to computer implementation. A computer

program could be written specifically for a single decision tree (as we have
done for the HSE tree), or it could be part of a more general program that
would apply to any decision tree. For each probability and utility the com-
puter would request as input the mean m and a bound b, as well as the range
of permissible values. If the formulas presented earlier cannot be applied
(e.g., the term inside the square root sign is negative), the user would be in-
formed that the pair of values m and b is not compatible with a logistic-
normal distribution and would be asked to provide a new pair. If the for-
mula can be applied, then the mean > and the standard deviation s of the
associated normal distribution would be computed, and the implicit other
bound of the probability or utility would be displayed to the user.

If the user is not satisfied with the implicit bound, he can input new
values for m, for b, or for both. For example, after providing the values
m = 0.18 and b = 0.05 for the mortality rate of untreated non-HSE, the
user would be informed that these values imply a 95 percent upper bound of
0.42. If he felt this value to be too high, he might provide the new value
b = 0.30 (while leaving m = 0.18), and be informed that the new implicit
lower bound is 0.09. This process would continue until the user was satisfied
with the values of m, b, and the implicit other bound. After the data entry
for all probabilities and utilities is completed, the computer would carry out
the simulation by repetitively sampling from each distribution and comput-
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ing the expected utilities. The results of the simulation would be presented
in a format similar to Table 2.

The technique, as we have described it, assumes that the distributions
about all probabilities and utilities are independent. (This is unlike the case
for expected utilities, which, as noted in the previous section, are interde-
pendent.) This assumption will be violated in many decision trees. For
example, in the HSE decision tree two probabilities that are clearly not inde-
pendent are that of death in non-HSE patients receiving vidarabine and that
of death in untreated non-HSE patients. Interdependence can also occur if
several probabilities or utilities have been estimated from a single data base;
any bias in the data base (e.g., patient selection bias) may tend to inflate or
diminish all estimates.
A solution to the problem of interdependence would be to choose corre-

lation coefficients that specify all interrelationships among probabilities
and utilities, and to then draw the random values from a multivariate
normal distribution (instead of a collection of independent normal distribu-
tions). This solution, even if theoretically valid, is impractical. Fortunately,
a reasonable compromise between this ideal solution and the assumption of
independence is available in many situations. In the HSE example, the com-
promise resolution is effected by an appropriate choice of &dquo;fundamental&dquo;
probabilities (see Derived Probabilities and Utilities, above). When interde-
pendence results from several quantities being estimated from a common
data base, all can be considered to be completely correlated. Thus, in each
run of the Monte Carlo analysis, all of these quantities can be simulated
from a single, randomly selected quantile of their distribution functions.

One further aspect of our technique - the need to specify 95 percent
confidence bounds - raises important questions. While bounds for objec-
tively determined probabilities (those based on observed ratios) can be sys-
tematically approximated, how reliable are subjective estimates of bounds?
What biases are operative in the subjective estimation of extreme values?
Can the estimator truly differentiate a 95 percent bound from, say, a 90 per-
cent or 99 percent bound? In fact, there is evidence that people do estimate
extreme values poorly [14]. This does not, however, invalidate the use of
our technique, just as known shortcomings in subjective probability estima-
tion more generally [1] do not invalidate conventional decision analyses that
employ subjective probabilities.
We have presented the tools needed to carry out probabilistic sensitivity

analysis using one type of parametric distribution. We have not attempted
to answer all potential questions about the technique. For example, given a
decision tree and a set of estimates of means and bounds for all probabilities
and utilities, how many simulation runs should be carried out? Are there
families of parametric distributions other than the logistic-normal family
that can be used conveniently for probabilistic sensitivity analysis? If so, are
the results of an analysis, such as those presented in Table 2, sensitive to the
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choice of parametric family? If this technique generates interest among
decision analysts, questions such as these can lead to fruitful areas for
future research.

In summary, we have described an easily applied method for sensitivity
analysis that considers variability in all probabilities and utilities simultane-
ously, and that allows the analyst to make statements to the form: &dquo;Avail-
able data suggest that, with 80 percent certainty, no biopsy; treat is the best
strategy,&dquo; or that &dquo;with 58 percent certainty, it is better than the remaining
strategies by at least an additional four lives per 1000 patients.&dquo; In another
setting, the smallest clinically important difference may be one year of life
expectancy [15]. This ability is achieved at low cost to the analyst: One addi-
tional value (an upper or lower bound) must be specified for each probabil-
ity and utility, and a computer must be available to carry out the heavy
computational burden.

Appendix A: Derivation of the Parameters of the
Normal Distribution of logit(X) from the Mean and
(Upper or Lower) Bound of X

The text of this paper contains all of the information required to carry out
probabilistic sensitivity analysis using logistic-normal distributions. This
Appendix, which derives the formulas presented in the text, and which in-
volves calculus, can be skipped without compromising the reader’s ability to
apply our technique.

Our problem is as follows: given the mean and a bound (i,e., upper or
lower bound of the 95 percent confidence range) of a probability or utility
X, measured on a scale of 0-1, can we construct a normal distribution on
the logistic scale that has a mean and bound on the 0-1 scale equal to the
specified values? We here provide a solution to this problem. Let m be the
mean and b the lower bound of X, and let t4 and s be the mean and standard
deviation of the distribution of logit(X). (The values m and b are known; we
seek it and s). (We present the derivation for the case in which a lower
bound is specified; that for the upper bound is similar.)

One equation relating these values is

where B = logit(b). This equation follows because B is the 95 percent lower
bound of the normal distribution, since

from which it follows that B is 1.96 standard deviations below the mean A.
If m = 0.5, then the distribution of X is symmetric, so that A = 0, and s

is easily computed from equation (1) to be -B/ 1.96. For any other value of
m it is not the case that A = logit(m), and we proceed as follows.
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Letting F(x) represent the distribution function of X, its mean m is given
by the formula C 1

Because X is logistic-normal, its distribution function is (by definition)
given by F(x) _ ~~,5 (logit(x)), where 4l, ~ is the normal distribution
function with mean it and standard deviation s. (This relationship is
illustrated in Figure 3.) In view of this, and using the change of variables
z = logit(x) [or, equivalently, x = ez/(1 + ez)], equation (2) can be
rewritten as r + 00 -’7 .--

where ~~,5(z) is the probability density function of the normal distribution
of mean 2 and standard deviation s.
We need to solve equations (1) and (3) for 11 and s. The integral in equa-

tion (3) cannot be solved explicitly. However, the function ez I (1 + ez) can be
well approximated by a zero-mean normal distribution of suitable standard
deviation t [10], as seen in Figure 5. The two points (other than 0) at which
ezl (1 + ez) and <l>o,t(z) are equal depend on the choice of t. In this setting, we
choose t so that the functions are equal at the quantile corresponding to m.
[We do this so that the two functions are equal near the maximum of 0,,,,s(z),
the term by which ezl (1 + ez) is multiplied in the integrand in equation (3).] ]
From Figure 5, this value of t is the one for which 4>o,t(1ogit(m» = m. Not-

ing that 4>o.t(1ogit(m» = 4>0. 1 (1ogit(m) I t), it follows that

Figure 5. Close approximation of eZ/(1 1 + eZ) and the zero-mean normal distribution
function 4).,t(z). The crossing points of the curves depend on the standard deviation
t. By suitable choice of t (see Appendix A), the two functions are equal at the mth
quantile, where m is the mean value of the probability or utility in question.
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where <1> = <1>0,1 and 4l - is the inverse of 4~. Using 4lo,~(z) as an approxima-
tion for ezl (1 + ez) in equation (3), the right side of that equation becomes
the convolution of two normal distribution functions [16]. It follows that

Rearranging terms and replacing logit(m) with M, one obtains

Substituting the expression for s given by equation (1) into the above equa-
tion, squaring both sides, and letting E = 1. 96 I cI> - l(m) yields the
following equation for A:

If m ~0.025 or 0.975, then E ~ 1, so that equation (6) is a quadratic
equation for jn. Solving by conventional means,

When m is between 0.025 and 0.975, the quantity inside the radical is always
positive, so that there are two possible values for 1-’. Because equation (6)
’,4’as obtained by squaring equations (1) and (5), one of the two values of >
might not satisfy (1) or (5), but instead satisfy the negative of (1) or (5) (i.e.,
le:t-side = negative of right-side). In fact, it is easily shown that the only
acceptable value of ti [i.e., the only one that satisfies (1) and (5)] is

When m is less than 0.025 or greater than 0.975, the quantity inside the
radical can be negative, zero, or positive. If negative, then the distribution
cannot be approximated using a logistic-normal model. If zero, then equa-
tion (7) yields a single value for ~; this value is acceptable unless m < 0.025
and b > 0.5, or m > 0.975 and b < 0.5. Finally, if the quantity inside the
radical is positive, then equation (7) yields two values for it; neither is ac-
ceptable if m < 0.025 and b > 0.5, or if m > 0.975 and b < 0.5; only the
one given by equation (8) is acceptable if m < 0.025 and b is a lower

bound, or if m > 0.975 and b is an upper bound; both are acceptable other-
wise. In the last situation, in which both values are acceptable, we would use
the value given by equation (8); while somewhat arbitrary, this value is
closer to B and thus yields a narrower distribution.
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If m = 0.025 or 0.975, then E = 1, so that equation (6) is a linear equa-
tion for A, whose solution is

This value is acceptable if m = 0.025 and b < 0.5, or if m = 0.975 and
b > 0.5, unacceptable otherwise.
When there is an acceptable root > given by equation (8) or (9), the stan-

dard deviations is obtained directly from equation (1). When there is no
acceptable root [i.e., if m s 0.025 and b > 0.5, or if m >_ 0.975 and
b < 0.5, or if the quantity inside the radical in equation (8) is negative],
then m and b cannot be fitted to a logistic-normal distribution.

Based on the same reasoning used to justify equation (1), the implicit
upper bound is the value (between 0 and 1) whose logit transform is

14 + 1.96s. That is,

If b had been chosen to be the 95 percent upper bound, then the implicit
lower bound would be given by an equation similar to (10), but with
A + 1.96s replaced by it - 1.96s.

Equations (1) and (8) [or (1) and (9) if m = 0.025 or 0.975] provide
closed-form expressions for A and s in terms of m and b. Because the deriva-
tion of equations (8) and (9) relies upon an approximation - replacing
ez I (1 + ez) with a zero-mean normal distribution function - we tested our
results empirically. For example, we set m = 0.4 and b = 0.05, and
obtained A = -0.51 and s = 1.24 from equations (1) and (8). We then
randomly selected 1000 values from the normal distribution of mean - 0.51 1
and standard deviation 1.24, and took the inverse logit transform (eZ/ 1 + ez)
of each. The resulting 1000 numbers had a mean of 0.409, very close to the
desired mean of 0.4. Furthermore, 2.2% of the numbers were less than
0.05, close to the desired 2.5 % . Similar excellent results were obtained over
a wide variety of choices of m and b, including the extreme choice of
m = 0.001 and b = 0.0002.

Appendix B: Chance Nodes with More than Two
Branches

The following is a practical approach (though not precise from a theoretical
standpoint) to Monte Carlo simulation involving a multiple-branch chance
node with branch probabilities p 1, p2, ... , p&dquo;. For each probability p,, the
mean m, and a bound b, are specified. (The means must sum to 1.) Each p, is
assumed to be logistic-normal, and proceeding as in Appendix A, the mean
Jli and the standard deviation s, of the normal distribution representing
logit(p) is derived. In each run of the simulation, random selection from
these distributions yields a value q, as a preliminary estimate of p i , q2 of
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p2, and so on. The values q,, q2, ..., qn are then normalized to a sum of 1.
That is, the value used to estimate the ith probability p, is

Although each p; is estimated by an expression whose numerator comes
from a distribution that represents p, and whose denominator has a mean
value of 1, the result does not necessarily have the mean and bound speci-
fied for p,. This is because the mean of a quotient of two distributions is not
in general the quotient of the means. However, empirical testing of this ap-
proach with four-branch chance nodes has confirmed that it performs well
over a wide variety of specified values for the mean and bound at each
branch.
A theoretically more appealing approach to multiple-branch chance

nodes would be to assume that the (n -1 ) values

(for i = 1,2,..., n -1 ) are (n - I)-variate normal. The probabilities are
then derived from Z 1, z2,..., Zn- by

The practical barrier to carrying out such an approach is the problem of
determining the parameters of the (n - I)-variate normal distribution so that
each of the probabilities p, has the desired characteristics (i.e., mean and
bound).

Notes

1. In fact, any confidence range (e.g., 75%, 90%) could be used, with only minor
modifications to the formulas in Appendix A.

2. &Phi;-1(m) is the number x (between - &infin; and + &infin;) for which &Phi;, the normal distri-
bution function of mean 0 and standard deviation 1, evaluated at x equals m.
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